55 research outputs found

    Development of a protocol for maintaining viability while shipping organoid-derived retinal tissue.

    Get PDF
    Retinal organoid technology enables generation of an inexhaustible supply of three-dimensional retinal tissue from human pluripotent stem cells (hPSCs) for regenerative medicine applications. The high similarity of organoid-derived retinal tissue and transplantable human fetal retina provides an opportunity for evaluating and modeling retinal tissue replacement strategies in relevant animal models in the effort to develop a functional retinal patch to restore vision in patients with profound blindness caused by retinal degeneration. Because of the complexity of this very promising approach requiring specialized stem cell and grafting techniques, the tasks of retinal tissue derivation and transplantation are frequently split between geographically distant teams. Delivery of delicate and perishable neural tissue such as retina to the surgical sites requires a reliable shipping protocol and also controlled temperature conditions with damage-reporting mechanisms in place to prevent transplantation of tissue damaged in transit into expensive animal models. We have developed a robust overnight tissue shipping protocol providing reliable temperature control, live monitoring of the shipment conditions and physical location of the package, and damage reporting at the time of delivery. This allows for shipping of viable (transplantation-competent) hPSC-derived retinal tissue over large distances, thus enabling stem cell and surgical teams from different parts of the country to work together and maximize successful engraftment of organoid-derived retinal tissue. Although this protocol was developed for preclinical in vivo studies in animal models, it is potentially translatable for clinical transplantation in the future and will contribute to developing clinical protocols for restoring vision in patients with retinal degeneration

    Alterations in candidate genes PHF2, FANCC, PTCH1 and XPA at chromosomal 9q22.3 region: Pathological significance in early- and late-onset breast carcinoma

    Get PDF
    Introduction: Younger women with breast carcinoma (BC) exhibits more aggressive pathologic features compared to older women; young age could be an independent predictor of adverse prognosis. To find any existing differences in the molecular pathogenesis of BC in both younger and older women, alterations at chromosomal (chr.) 9q22.32-22.33 region were studied owing to its association in wide variety of tumors. Present work focuses on comparative analysis of alterations of four candidate genes; PHF2, FANCC, PTCH1 and XPA located within 4.4 Mb region of the afore-said locus in two age groups of BC, as well as the interrelation and prognostic significance of alterations of these genes. Methods: Deletion analysis of PHF2, FANCC, PTCH1 and XPA were examined in a subset of 47 early-onset (group-A: ≤ 40 years) and 59 late-onset (group-B: > 40 years) breast carcinomas using both microsatellite and exonic markers. Methylation Sensitive Restriction analysis (MSRA) was done to check for promoter methylation. Quantitative real-time polymerase chain reaction (Q-PCR) and immunohistochemisty (IHC) was done in some genes to see their relative mRNA and protein expressions respectively. Clinico-pathological correlation of different parameters as well as patient survival was calculated using different statistical softwares like EpiInfo 6.04b, SPSS 10.0 etc. Results: Either age group exhibited high frequency of overall alterations in PHF2, FANCC and PTCH1 compared to XPA. Samples with alteration (deletion/methylation) in these genes showed reduced level of mRNA expression as seen by Q-PCR. Immunohistochemical analysis of FANCC and PTCH1 also supported this observation. Poor patient survival was noted in both age groups having alterations in FANCC. Similar result was also seen with PTCH1 and XPA alterations in group-A and PHF2 alterations in group-B. This reflected their roles as prognostic tools in the respective groups in which they were altered. Conclusion: Overall alterations of PHF2, FANCC and PTCH1 were comparatively higher than XPA. Differential association of alterations in FANCC and PTCH1 with that of PHF2, XPA and two breast cancer susceptibility genes (BRCA1/BRCA2) in the two age groups suggests differences in their molecular pathogenesis and dysregulation of multiple DNA repair pathways as well as hedgehog dependent stem cell renewal pathway

    Release of insecticidal transgenic crops and gap areas in developing approaches for more durable resistance

    Get PDF
    Transgenic cultivars expressing d-endotoxin coding genes of Bacillus thuringiensis are beinggrown globally on about 12 million hectares this year. Agriculture in India can benefit substan-tially by adopting transgenic insecticidal cultivars since, in contrast to the world average of 30%,of the total chemical pesticides used in India 75% are employed against insects. No other bio-logical approach, as safe as and yet as effective as the Bt technology is presently known to con-trol agricultural pests. The question at the center stage is to expedite the commercial release ofBt transgenics and also make a parallel effort to devise knowledge-based strategies aimed atachieving longer durability of crop resistance to insect pests. Plant breeders have encounteredsimilar situations in the past for improving crops against insects and other diseases. This articleidentifies the gap areas where research efforts are needed to develop strategies for enhancing thedurability of crop resistance

    Characterization of Three-Dimensional Retinal Tissue Derived from Human Embryonic Stem Cells in Adherent Monolayer Cultures

    Full text link
    Stem cell-based therapy of retinal degenerative conditions is a promising modality to treat blindness, but requires new strategies to improve the number of functionally integrating cells. Grafting semidifferentiated retinal tissue rather than progenitors allows preservation of tissue structure and connectivity in retinal grafts, mandatory for vision restoration. Using human embryonic stem cells (hESCs), we derived retinal tissue growing in adherent conditions consisting of conjoined neural retina and retinal pigment epithelial (RPE) cells and evaluated cell fate determination and maturation in this tissue. We found that deriving such tissue in adherent conditions robustly induces all eye field genes (RX, PAX6, LHX2, SIX3, SIX6) and produces four layers of pure populations of retinal cells: RPE (expressing NHERF1, EZRIN, RPE65, DCT, TYR, TYRP, MITF, PMEL), early photoreceptors (PRs) (coexpressing CRX and RCVRN), inner nuclear layer neurons (expressing CALB2), and retinal ganglion cells [RGCs, expressing BRN3B and Neurofilament (NF) 200]. Furthermore, we found that retinal progenitors divide at the apical side of the hESC-derived retinal tissue (next to the RPE layer) and then migrate toward the basal side, similar to that found during embryonic retinogenesis. We detected synaptogenesis in hESC-derived retinal tissue, and found neurons containing many synaptophysin-positive boutons within the RGC and PR layers. We also observed long NF200-positive axons projected by RGCs toward the apical side. Whole-cell recordings demonstrated that putative amacrine and/or ganglion cells exhibited electrophysiological responses reminiscent of those in normal retinal neurons. These responses included voltage-gated Na+ and K+ currents, depolarization-induced spiking, and responses to neurotransmitter receptor agonists. Differentiation in adherent conditions allows generation of long and flexible pieces of 3D retinal tissue suitable for isolating transplantable slices of tissue for retinal replacement therapies.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140208/1/scd.2015.0144.pd

    Cold atoms in space: community workshop summary and proposed road-map

    Get PDF
    We summarise the discussions at a virtual Community Workshop on Cold Atoms in Space concerning the status of cold atom technologies, the prospective scientific and societal opportunities offered by their deployment in space, and the developments needed before cold atoms could be operated in space. The cold atom technologies discussed include atomic clocks, quantum gravimeters and accelerometers, and atom interferometers. Prospective applications include metrology, geodesy and measurement of terrestrial mass change due to, e.g., climate change, and fundamental science experiments such as tests of the equivalence principle, searches for dark matter, measurements of gravitational waves and tests of quantum mechanics. We review the current status of cold atom technologies and outline the requirements for their space qualification, including the development paths and the corresponding technical milestones, and identifying possible pathfinder missions to pave the way for missions to exploit the full potential of cold atoms in space. Finally, we present a first draft of a possible road-map for achieving these goals, that we propose for discussion by the interested cold atom, Earth Observation, fundamental physics and other prospective scientific user communities, together with the European Space Agency (ESA) and national space and research funding agencies.publishedVersio

    Cold atoms in space: community workshop summary and proposed road-map

    Get PDF
    We summarise the discussions at a virtual Community Workshop on Cold Atoms in Space concerning the status of cold atom technologies, the prospective scientific and societal opportunities offered by their deployment in space, and the developments needed before cold atoms could be operated in space. The cold atom technologies discussed include atomic clocks, quantum gravimeters and accelerometers, and atom interferometers. Prospective applications include metrology, geodesy and measurement of terrestrial mass change due to, e.g., climate change, and fundamental science experiments such as tests of the equivalence principle, searches for dark matter, measurements of gravitational waves and tests of quantum mechanics. We review the current status of cold atom technologies and outline the requirements for their space qualification, including the development paths and the corresponding technical milestones, and identifying possible pathfinder missions to pave the way for missions to exploit the full potential of cold atoms in space. Finally, we present a first draft of a possible road-map for achieving these goals, that we propose for discussion by the interested cold atom, Earth Observation, fundamental physics and other prospective scientific user communities, together with the European Space Agency (ESA) and national space and research funding agencies
    corecore